

DeCarb-PUI * Decarbonization of Industrial Processes through Redesign of the Process-Utility Interface

Pierre Krummenacher, HEIG-VD, <u>pierre.krummenacher@heig-vd.ch</u> Benjamin H.Y. Ong, HSLU <u>benjamin.ong@hslu.ch</u> Donald Olsen, HSLU, <u>donald.olsen@hslu.ch</u> Beat Wellig, HSLU, <u>beat.wellig@hslu.ch</u>

22.06.2022

28. Tagung des BFE-Forschungsprogramms "Wärmepumpen und Kältetechnik"

^{*} Project carried out with the financial support of the Swiss Federal Office of Energy (SFOE) under Grant Contract SI/502298-01

Significant exergy losses due to large heat transfer driving forces: a chicken-and-egg problem?

A symetric situation applies (to a lesser degree) to process cooling

DeCarb-PUI vision

Boost renewables and heat pumping by process-utility interface (PUI) retrofit and heat integration

Vision behind DeCarb-PUI how to decarbonize processes in the range 0°C to about 160°C

DeCarb-PUI Project Goals and Means

- allow process industries to achieve larger decarbonization in a cost-efficient way
- provide process equipment manufacturers quantitative data to further improve their design

The goals are to be pursued resorting to the following **means**:

- identifying heat transfer exergy losses
- quantifying associated decarbonization targets and benefits
- "optimizing" and designing processes, utilities, and energy resources simultaneously as a whole
- developing tools and methods allowing simple, practice-oriented and applicable solutions
- increasing stakeholders awareness by "how to" guidelines for KTT

Project team & organization

Practice-oriented case studies involving leading, worldwide active industrial partners

Work packages

WP1: Literature review WP2: HI tools and methods for analysis, identification of promising solutions, and targeting improvement

WP3: Definition of case studies

WP4: Application of HI tools and methods for analysis of case studies: targets, processes and utility system redesign / retrofit options

WP5: HI analysis of redesigned processes and utility system: conceptual design; decarbonization and costs benefits

Case study 1

Case study 2

Pinch Analysis based methodologies

WP7: Knowledge and technology transfer

WP6: *How to* guidelines