sweet swiss energy research for the energy transition

This poster was produced by DeCarbCH consortium, which is sponsored by the Swiss Federal Office of Energy's SWEET programme.

DeCarbCH

Design and Integration of CO_{2} Capture Plant using Piecewise Steady-state Simulation and Process Integration

Benjamin Ong, Dario Allgäuer, Beat Wellig,HSLU-TEVT, Gianfranco Guidati, ETHZ benjamin.ong@hslu.ch

Goals

- To optimally integrate CO_{2} capture and storage (CCS) plant to an existing industrial case study (CS).
- Quantify the changes in terms of energy of the newly integrated system.

Problem

Extracted from SFOE

- The net zero target can only be achieved if CO_{2} is captured.
- Challenge: CO_{2} capture is a heatintensive process.
- Conceptual designs with limited information cannot accurately quantify the effects of integration on the existing system performance.

Methodology

Three existing engineering methodologies are used for the optimal integration:

- Process Simulation: To optimize the CCS process and extract the heating and cooling demands data
- Pinch Analysis (PA): To understand the energetic demands and integration of the CS and CCS process
- Piecewise Steady-state Simulation: To establish a basic understanding of the process characteristics (hourly) of the CS and the effect of integration of CCS

Results

Case Study
Hourly district heating data

Pinch Analysis

CO_{2} Capture Process
Process simulation

Integrated Process Design

Integrated Process Design with Heat Pump

$20.0 \quad 40.0$
$\Delta \dot{H}[\mathrm{MW}]$

$$
\begin{aligned}
& \text { Recooling } \\
& 211 \mathrm{GWh} / \mathrm{a} \\
& \mathrm{DH} \text { peak load } \\
& 11 \mathrm{GWW} / \mathrm{a} \\
& \mathrm{DH} \mathrm{HP} \\
& 66 \mathrm{GWh} / \mathrm{a} \\
& \mathrm{DH} \text { condenser } \\
& 143 \mathrm{GWh} / \mathrm{a} \\
& \text { Air preheating } \\
& 13 \mathrm{GWW} / \mathrm{a} \\
& \text { Cozabsorption } \\
& 115 \mathrm{GWh} / \mathrm{a} \\
& \text { Electricity generati } \\
& 95 \mathrm{GWh} / \mathrm{a}
\end{aligned}
$$

Cost Analysis

ST: Short-term
T: Short-term
LT: Long-term

Conclusions

- The hourly characteristics of the thermal and electrical commitment of the case study were identified.
- The simulation quantifies the change in the energy flow of the integrated design.
- PA integrates both systems, and heat pump.

-Core partners		
DE GENĖVE	HSLU ${ }_{\text {Luzern }}^{\text {Hochule }}$	Oost
ETHzürich	ZWW	Empa

Associate partners		
		$\mathrm{HE}^{\text {º }}$
SUPS		IG
	cen	INDP

Cooperative partners:
SWISSOLAR梁

