Swiss energy research for the energy transition

This poster was produced by DeCarbCH consortium, which is sponsored by the Swiss Federal Office of Energy's SWEET programme.

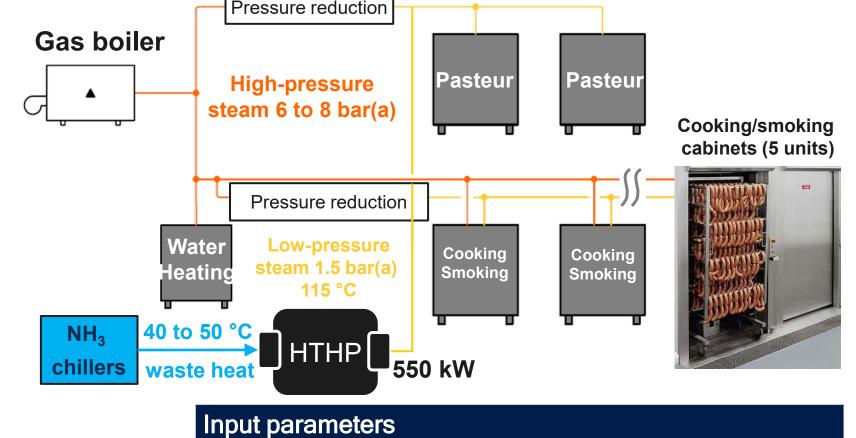
Annex 58 HTHP-CH:

Integration of High-Temperature Heat Pumps (HTHPs) in Swiss Industrial Processes (SI/502336-01)

Integration of a Steam-Generating Heat Pump in a Swiss meat factory

Cordin Arpagaus¹, Sidharth Paranjape¹, Frédéric Bless¹, Stefan S. Bertsch¹, Christian Jansen² ¹OST Eastern Switzerland University of Applied Sciences, Institute for Energy Systems (IES) ²Gustav Spiess AG, CH-9442 Berneck, Switzerland

Introduction

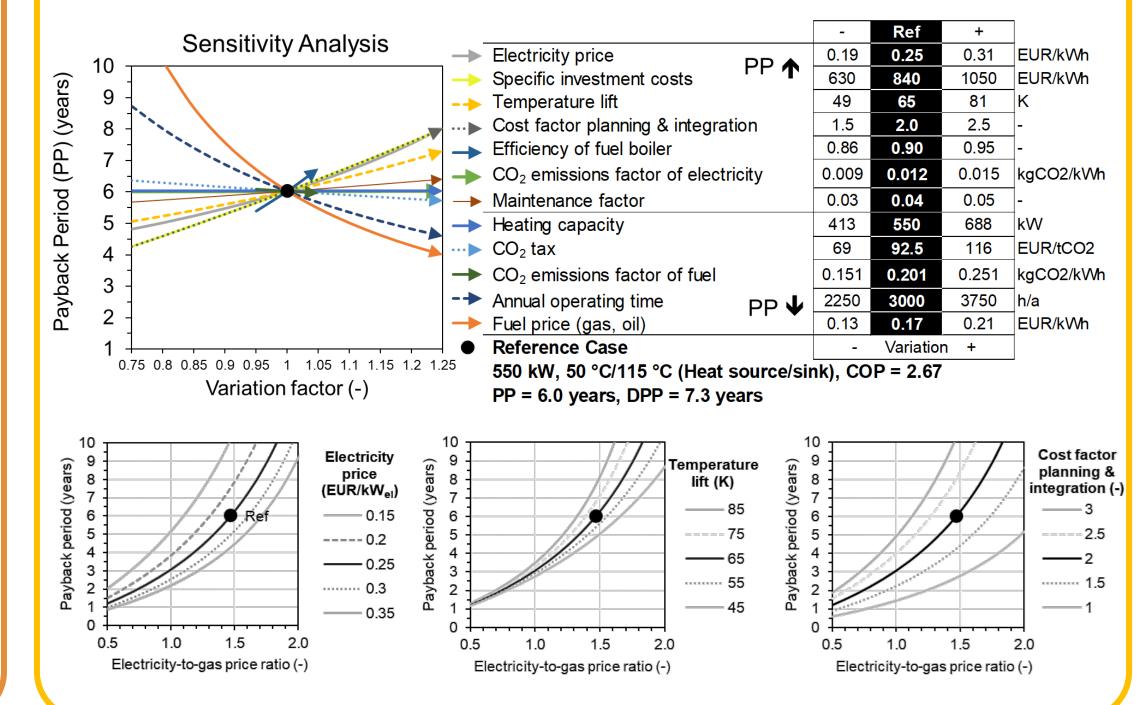

DeCarbCH

- Gustav Spiess AG produces meat products such as sausages, ham, and bacon.
- Today, a gas/oil boiler provides 6 to 8 bar(a) steam to heat the pasteurization and cooking/smoking cabinets
- The steam pressure is reduced to 1.5 bara (115°C) to achieve cabinet temperatures of 85 to 90 °C and a sausage core temperature of about 72 °C
- 5 cooking/smoking units: 840 kg/h steam

Goals

- The company committed the SBTi (Science-based Targets Initiative) to reducing it's Scope 1 (direct, electricity) and Scope 2 (indirect) greenhouse gas emissions by 50% by 2030 (2018 base) and to reducing its Scope 3 emissions.
- Goal: Integrating a 550 kWth steam-generating heat pump (SGHP) into sausage cooking/ smoking processes by using the waste heat from the NH₃ chillers and as a possible heat source at 40 to 50 °C
- Operating time: ~ 3'000 h/a (12 h/d, 250 d/a)

Integration Concept


	Input parameters		
	Heat sink inlet/outlet temperature	°C	20/115 (1.5 bara steam)
	Heat source inlet/outlet temperature	°C	50/45
_	Temperature lift	К	65
Energy	Heating capacity	kW	550
	Fuel (gas, oil) price	EUR/kWh	0.17
costs &	Electricity price	EUR/kWh	0.25
	Electricity-to-fuel price ratio	-	1.47
economic	CO ₂ tax (or subsidies)	EUR/tCO ₂	92.5
economic	Electricity CO ₂ emissions factor	kgCO ₂ /kWh	0.012
	Fuel CO ₂ emissions factor	kgCO ₂ /kWh	0.201
calculation	Annual operating time (12 h/d, 250 d/a)	h/a	3'000
	Efficiency of fuel boiler	-	0.90
	Maintenance factor (on capital costs)	-	0.04
	Cost factor for planning & integration	-	2.0
	COP ($COP = 52.94 \cdot \Delta T_{lift}^{-0.716}$)	-	2.67
	Specific investment costs (HTHP)	EUR/kW	840

-Results

	Reference conditions		
Total investment costs	kEUR	924	
Annual CO ₂ emissions reduction	tCO ₂ /a (%)	361 (98%)	
Annual energy savings	MWh/a (%)	1'214 (66%)	
Annual fuel cost savings	kEUR/a	312	
Annual electricity costs	kEUR/a	155	
Annual heat pump maintenance costs	kEUR/a	37	
Annual CO ₂ tax compensation	kEUR/a	33	
Annual cost savings	kEUR/a	153	
Discount rate	%	5	
Payback period	а	6.0	
Discounted payback period	а	7.3	

- Method

Payback period and sensitivity analysis

-Conclusions

- The estimated payback period of 6 years is influenced by the electricity and fuel prices, temperature lift (i.e., COP, application), investment costs, and planning/integration
- Multiplication potential in other food processes
- Technical support is needed for HTHP integration (e.g.

refrigerant selection, combination with gas boiler, cost transparency regarding investment, maintenance, energy costs, reduction of CO_2 emissions)

