
TES to reduce fossile peaks in DH networks

OST, Florian Ruesch, SPF Institute for Solar Technology, florian.ruesch@ost.ch

Goals

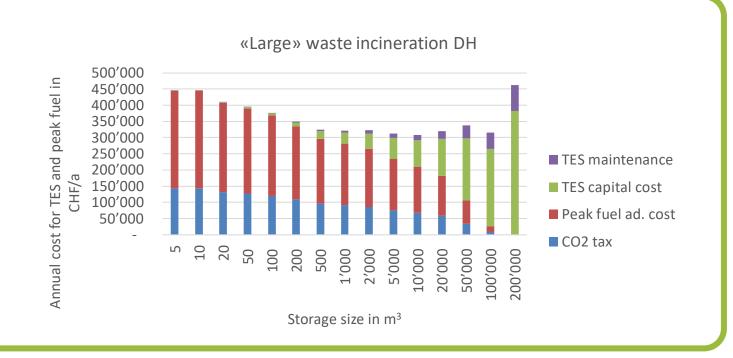
- 1. To which extend can Thermal energy storage (TES) be used to substitute or minimize fossil peak coverage in Swiss DH networks?
- 2. How does the need of TES differ between warm and cold winters?
- 3. Under which circumstances are TES solutions economically interesting?


Problem

- Nearly ¼ of Swiss DH energy is fossil (mainly peaks)
- A full decarbonization is aimed for
- Renewable sources are capital intensive and therefore expensive when only operated during short peaks

Introduction

- Different TES technologies available
- Strong decrease of relative cost in international examples


Method

Typical grids:	Wood	Lake water HP	Waste incineration
Power [MW]	0.9	3.7	23.3
Demand [GWh]	1.5	7.2	47.6
Grid length [km]	1.3	2.6	19.8
	Fossil share simulated for different years and different storage sizes		
	16.0%	Storage Sizes	
Simulation and parameter variation with simplified	14.0%		2011
			 2012
setup in TRNSYS:	12.0%		
	8.0% Share 8.0%		2013
	S 8.0%		—·· 2014
	6.0%		2015
	4.0%		−−2016
			—·-2017
	0.0%	100 1000 10000	100000
	10	Storage size in m ³	100000

Results

Minimization of TES volume and fuel cost for different

- typical networks
- economic parameters
- additional cost of peak fuel

Conclusions

- The difference in storage need between warm and cold winters are pronounced
- In small wood based networks, hourly TES are economically interesting
- In large waste incineration grids, seasonal TES are economically interesting

Core partners

ETH zürich

School of

-Associate partners

Scuola universitaria professionale

della Svizzera italiana **SUPSI**

Cooperative partners:

BELIMO°

energienetz GSG AG

>>> energie-cluster.ch

Weisskopf

Partner GmbH

