

Martin Pihl Andersen

Testing and modelling of a steamgenerating heat pump at up to 175 °C (SuPrHeat project)

Steam generating heat pumps, OST Webinar, 18 March 2024

Testing and modelling of a

Steam-generating heat pump at up to 175 °C

Steam Grow Heat Pumps (SGHs)

Kobelco SGH165

R-245fa + R-134a (mixture)

Single-stage screw compressor + flash tank + steam compressor

Steam ≤ 175 °C, Heat source from 35 °C to 70 °C Q = 660 kW (0.9 ton/h)

COP = 2.5, for 165 °C steam 70 °C source

Steam Grow Heat Pumps (SGHs)

Kobelco SGH165 135-175°C Flash tank Steam Steam Pressurized water Feed wate Already working! But.... 35-70°C Lower cost Future-proofing Increase performance Heat source Steam compressor unit water

Heat pump

Technology Perspective

- New refrigerants as alternative to R-245fa
- Drop in for BAU:
 - R-1224yd(Z)
 - Butane

Higher temperatures: R-1336mzz(Z)

Pentane

 \rightarrow Removing expensive steam compressor unit

System Configuration

* Numerical values at the rated condition

5

$$COP = \frac{\dot{m}_{steam} \cdot \dot{h}_{steam} \cdot \dot{m}_{in} \cdot h_{in} - \dot{m}_{FW} \cdot h_{FW}}{\dot{W}_{HP} + \dot{W}_{steam,comp} + \dot{W}_{FT}}$$

Mechanical and electric efficiency

Efficiency of working fluid compressor

Efficiency of steam compressor

Comparing experimental results modelling

Flash tank temperature

DTU E

Optimal Flash Tank temperature

DTU ₩ R

Keys to improve performance

Successful drop-in of new working fluid

Low GWP fluid was implemented without changes to the SGH components or controlsystem.

2

Hydrocarbons are capable

Hydrocarbon as working fluid are capable of delivering highest performance across all temperature conditions when considering life time economics

3

Compressor efficiency is key

Greater performance heavily rely on the development of more efficient compressors.

The best performance was exhibited when dropping the steam compressor.

Martin Pihl Andersen Technical University of Denmark mapian@dtu.dk

EUDP O

The Energy Technology Development and Demonstration Programme

18th of March 2024

Component	Variable	CEPCI	F	Cost function, CB ₀	
FW pump	Volume flow [l/s]	726	1.5	$\frac{510}{4} \cdot \dot{V}$	
FT pump	Volume flow [m^3/s]	-	-	-	
Injection pump	Volume flow [m^3/s]	-	-	-	
FT valve	Mass flow [kg/s]	567	2	$114.5 \cdot \dot{m}$	
Economizer valve	Mass flow [kg/s]	-	-	-	
Expansion valve	Mass flow [kg/s]	-	-	-	
Flash tank	Inlet volume flow [m^3/s]	610	1	$1444 \cdot \left(\frac{\dot{V}}{0.089}\right)^{0.63}$	
Steam compressor	Suction flow [m^3/hr]	500	1	$0.9 \cdot 1 \cdot \dot{V}^{0.38}$	
Screw compressor	Shaft power [W]	325	1	$f_{\rm flam} \cdot 0.9 \cdot 1490 \cdot \left(\frac{P}{745.7}\right)^{0.71}$	$f_{\rm flam} = 1.2$ for
Double screw compressor	Shaft power [W]	-	-	1.3 · Screw compressor	flammable
Inverter steam compressor	Input power [W]	567	1.5	$10710 \cdot \left(\frac{P}{250000}\right)^{0.65}$	$CBM = 1.1 \cdot F \cdot CB_0$
Inverter screw compressor	Input power [W]	-	-	-	
Evaporator	Area [m^2]	551	1.16	$0.88 \cdot (1600 + 210 \cdot A^{0.95})$	$CAPEX = 1.77 \cdot f_{sale} \cdot \Sigma CBM$
Condenser	Area [m ²]	-	-	-	£ _ 1 2
Internal HEX	Area [m^2]	-	-	-	$J_{\text{sale}} = 1.2$
Economizer HEX	Area [m^2]	-	-	-	