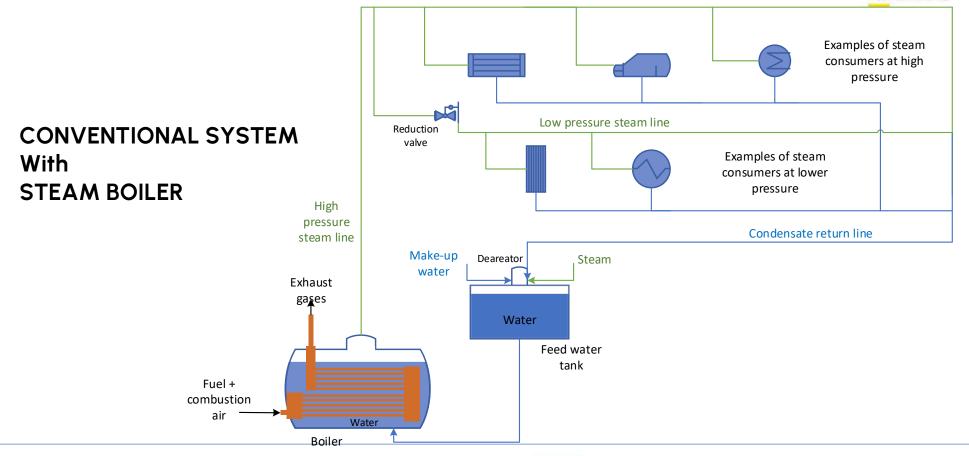


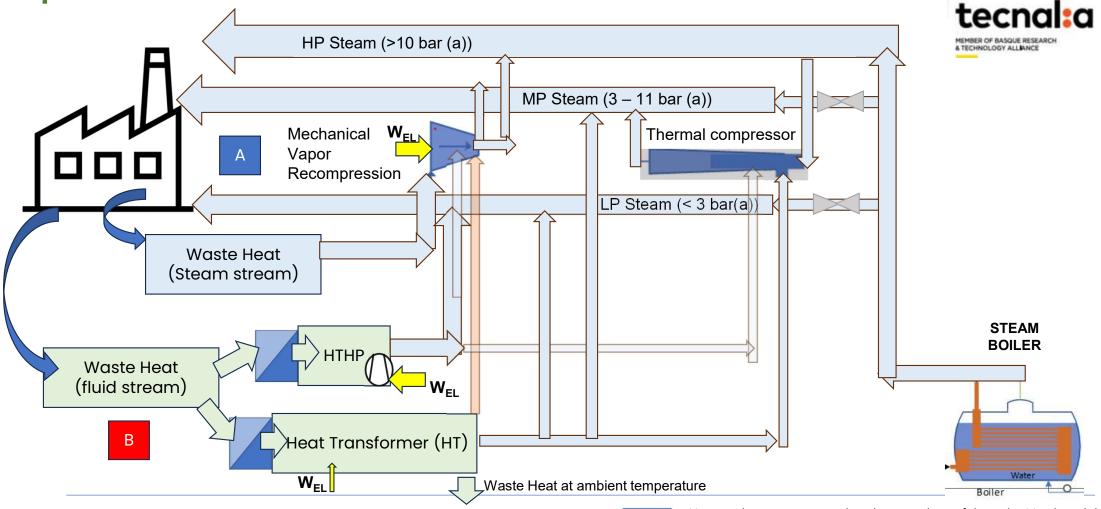
R&D activities on Steam-Generating Heat Pumps

José L. Corrales Ciganda Researcher

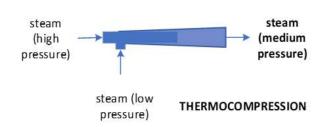
October 21st 2025 OST Webinar on Steam-Generating Heat Pumps

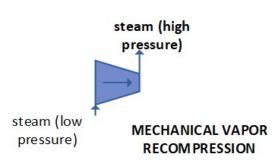


Business as usual: gas boiler and 2 pressure levels



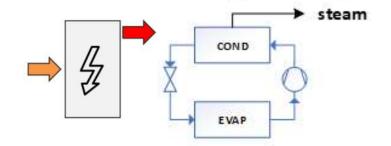
But, how can we recover and upgrade waste heat to produce steam in an industrial site?

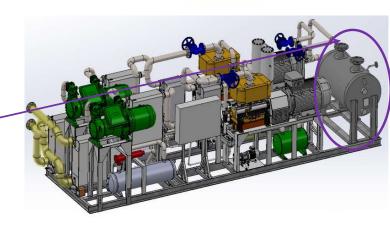




- Thermocompressor (TC)
 - + Proven and market available technology with different suppliers
 - + No moving parts, no electric consumption
 - 1 to 4 units of HP Steam per 1 unit of LP Steam are required

- A2
- Mechanical vapour recompression (MVR)
- + Does not require any supporting HP steam
- + Can make use of renewable electricity and be used for flexibility strategy
- Flexibility and availability for LP steam




B1

Steam generation with HTHP

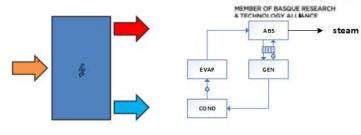
- + Can recover up to 100% of the waste heat
- + Can make use of renewable electricity and be used for flexibility
- + Increasing number of providers with different technologies
- Depending on the technology, direct steam generation is today possible for pressures up to 10 bar (200C)
- Generation of steam on the condenser requires careful design (Shell & plate or others, R&D required)
- Example, SPH Steam-Generating HTHP
 Push2Heat Demo2 with Shell and Plate Condenser
- Alternative: indirect generation using Flashtank
 - + Easier control of the HTHP cycle, operation safety
 - Additional circuit HTHP to Flash Tank penalizes COP

cascade HTHP, Δtl_{IIFT}>70C, COPel=2.3

Steam generation with Heat Transformer

☑Push2Heat

- + Very small (COPel>50) electricity consumption
- + Only moving parts are unexpensive small pumps
- Absorption Heat Transformer (AHT):


thermodynamics and working pair limits

- + state-of-the-art SE LiBr/H20 up to 160C => >43 AHT, 134 MW installed worldwide
- + double effect up to 180C => penalizes waste Heat recovery (COPth < 0.35)
- Existing systems for steam generation with Flash Tank (R&D required)

For higher sink temperatures => new working pairs (R&D required)

Chemical Heat Transformer (Ch-HT)
 Technology based on reversible chemical reactions, room for new developments
 (R&D required)

High Temperature Sinks (>220C) and direct steam generation already market available by European Supplier (Qpinch)

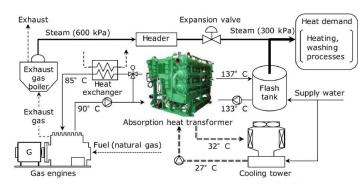


Fig. 5. Absorption heat transformer installed in an industrial plant (Capacity: 150 kW) [39]

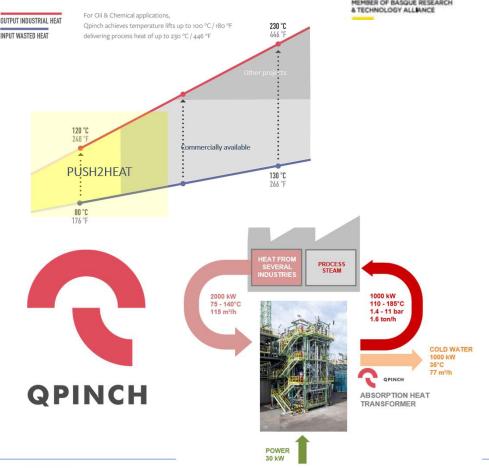
Source

Absorption heat transformer - state-of-the-art of industrial applications
Absorption heat transformer - state-of-the-art of industrial applications - ScienceDirect

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

Η

Chemical HT for direct steam production

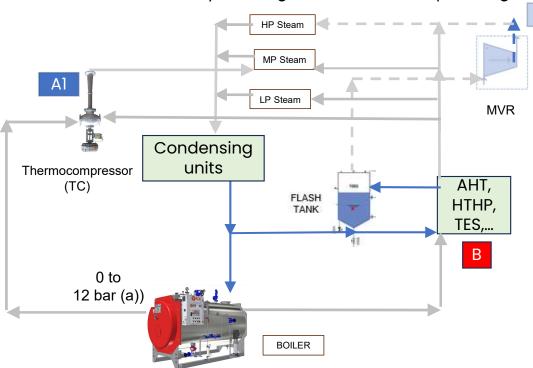

CHEMICAL plant (LDPE) in Antwerp, Belgium

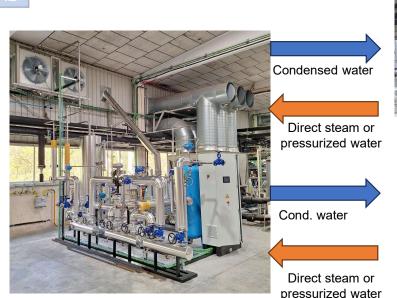
Waste heat source	Waste heat between 75-140 °C: heat from exothermic reactor or LPS vent
Heat supply	Process heat as steam at 110-185 °C as output of THT

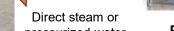
Injection in the low & medium pressure steam net

Steam distribution in client systems:

- $MP \rightarrow up to 11 bar(a)$
- $LP \rightarrow up to 5 bar(a)$
- 1.6 ton/h (1000 kW) nominal capacity


Controlled conditions R&D: Steam test bench in Tecnalias TERMILAB





- Test bench for combining steam-producing heat upgrade technologies
- First tests with HTPHs and AHT developed at Tecnalia, with Flash Tank and Thermocmpressor coupled to Boiler

Test-bench ready to integrate MVR (under planning)

Absorption HT (TECNALIA)

Piston HTHP (TECNALIA)

(TERMILAB, TECNALIA)

Steam Test Bench, 50 to 200 kW

Real conditions R&D: PUSH2HEAT Demo Sites

B2

DEMO 4:

Ch-HT

direct steam

production

(2 to 11 bar(a))

MEMBER OF BASQUE RESEAR & TECHNOLOGY ALLIANCE

DEMO 1: steam-gen HTHP (2 bar(a))* *WH-source = 46°C

DEMO 2: HTHP + MVR (6.5 bar(a))

DEMO 3: AHT + TC (6.5 bar(a))

FELIX

Laz io

Weiss enbom

SCHOELLER

GUARCINO

CARTIERE DI

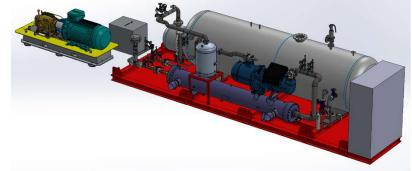
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

De mo sit e

O Test site

BOREALIS

P2H DEMO 2 - HTHP + MVR


MAIN CHARACTERISTICS

Screw compressor HTHP , R1233zd(E)		
Heat source	90°C / 600 kW	Biomass CHP
HT Heat sink	115.2°C / 744 kW	Steam to MVR
COP / W _{EL}	5.3 / 144 kW	

HTHP + MVR (COP = 3)			
Suction MVR	1.7 bar(a) / 1180 kg/h	From HTHP	
Discharge MVR	6.5 bar(a) / 1310 kg/h	To process	
W_{EL}	149 kW		

MAIN R&D CHALLENGES:

- Taylor-made Steam Generator / Refrigerant condenser
- Control of coupled systems
- Supply of Steam at constant pressure level

Heat Source	Heat Upgrade System	Heat Sin
District heating network condensate/steam HFM heat flow meter electric meter flow meter pressure/temperature sensor Combined Heat and Power Plants CHP CHP	Mechanical Vapor Recompression HTHP High Temperature Heat Pump	steam header 6.5 bara

P2H DEMO 3 – AHT + Thermocompressor

MAIN CHARACTERISTICS

SE LiBr/H2O AHT (COP_{EL} = 79 AHT)

Heat source	90°C / 709 kW	Biomass CHP
HT Heat sink	143°C / 341 kW	Into Flashtank
LT Heat sink	15°C / 368 kW	River cooling

AHT + Flashtank + TC (COP_{EL} > 35)

Steam 3.3 bar	540 kg/h	From Flashtank
Steam 14.5 bar	2046 kg/h	From HP Network
Steam 6.5 bar	2586 kg/h	To Process

MAIN R&D CHALLENGES:

- Control of AHT for stable TC operation
- Control of complete system for constant steam supply
- Electric consumption minimization

	Heat Source	Heat Upgrade System	High Temperature Heat Sink
	Treat source	ricut opgrade system	mg. i remperature ricut siiiix
			Low Temperature Heat Sink
		<u> </u>	HP steam Steam circuit (s) compressor MP steam MP steam
	from waste waste heat circuit (1)		Flash Tank
	heat circuit 11	Condenser	Upgraded heat circuit (1) HFM Feed water
			Heat rejection circuit (0)
	Hot water (driving heat)		to cooling water circuit
	condensate/steam		Ц
	Cooling water		

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

Steam-Generating Heat Pumps, OST Webinar, 21 October 2025"

Thanks a lot Eskerrik Asko ¡Muchas gracias!

For more information:

www.push2heat.eu

joseluis.corrales@tecnalia.com

